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when the gaps are centered or each ridge is a symmetrical double
ridge. Some additional information is given in Fig. 3, where, for a
fixed ridge width (s/a) and two values of ridge spacing (t/a),

the variations of the normalized cutoff wavelength (A, _/a) and

the bandwidth B with gap width (d/b) are shown for a regular

structure with two symmetrical double ridges and an inverted

structure with two single ridges.

B. Eigenvector and Gap Impedance

To solve the eigenvector CM’) in (10) was expressed in terms
of c/J’k’ and inverted submatrices after further manipulations.
However, these expressions were not useful for numerical compu-
tation, as the diagonal elements of diagonal matrices HJ and H,
are rdl zero after the first few leading elements, which cause
failure in numerical inversion. The actual computation of the
eigenvector components was carried out by a Gauss–Siedel itera-
tion of (10) with C}j”) made arbitrary successively (usually unity

prior to normalization of the eigenvector). The matrix [H] being
diagonally doihinant, the convergence was excellent.

The variation of Zg(m) at the gap center (P = 0.5) with (d/b)
for the dominant TE mode in an inverted structure with two

single ridges is shown in Fig. 3. For a given set of parameters

(t/a), (s/a), and (d/b), this impedance is found to be almost
independent of gap height (h/b), that is, almost identical for the
reguhw and inverted structures. For given (s/a) and (d/b),
however, it varies considerably with ridge spacing (t/a) in either
case. The impedance curves in Fig. 3 also closely depict those for
the regular structure with two symmetrical double ridges of
identical parameters, with the difference of impedance in the two
cases being less than 0.5 percent.

V. RJDGED WAVEGUJDE VARACTOR-TUNED GUNN

OSCILLATOR

In this section, some preliminary experimental results obtained

with two empirically-designed XN-band varactor-tuned Gunn

oscillators in fixed-length ridged-waveguide resonators are pre-

sented. The device mounts were not optimized and the choice of

ridge parameters was guided purely by mechanical considera-

tions. Fig. 4(a) shows the schematic diagrams of the device mount

in an inverted ridged WR-137 waveguide resonator (referred to as

oscillator A). For the oscillator with a Tesonator in regidar

configuration (referred to as oscillator B), all the dimensions

except the ridge spacing were identical. The performance of these

two oscillators is shown in Fig. 4(b), where the measured shift in

oscillation frequency and the output power are plotted as func-

tions of varactor bias.

VI. CONCLUSIONS

The Ritr-Galerkin technique has been applied to determine

the eigenvalues of a rectangular waveguide with two double

ridges located arbitrarily. When two identical, asymmetric double

ridges are placed symmetrically, considerable improvement in

bandwidth occurs if one ridge is inverted with respect to the

other. The best result is obtained when two single ridges are

closely spaced in an inverted configuration. The eigenvector has

been obtained by iteration of the matrix equations and has been

used in determining the gap impedance. Finally, the same pre-

liminary results obtained with two XN-band varactor-tuned Gtmn

oscillators in regular and inverted ridged resonators have been

presented. Though there is scope for optimization of the device

mounts, the results are certainly promising for such applications

of the ridged waveguides.
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Fig. 4. (a) Varactor-tuned Gunn oscillator in inverted waveguide resonator
(wavegnide: WR-137). s = 0.25 in, d = 0.1 in, I = 1.75 in, L = 0.875 in 1=
0.157 in (OSC.A); 0.295 in (OSC.B). (b) Variation of frequeney shift and
power output with varactor bias ( VB). Frequency of oscillation at VB = 0.4
V: 7.495 GHz (OSC.A); 7.20 Gffz (OSC.B). Varactor diode: AEI DC 4201B,
Gunn diode: MA 49151 (OSC.A); MA 49156 (OSC.B).

ACKNOWLEDGMENT

The authors are thankful to Professor B. R. Nag for his
encouragement during the work, and to the Computer Centre,
Calcutta University, for the use of their IBM 1130 computer. The
helpful suggestions from the reviewers are very much appreciated.

REFERf3NcEs

[1]

[2]

[3]

J. P. Montgomery, “On the complete eigenvahresolution of ridged wave-
guide,” IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp. 547-555,
June 1971.
D. Dasgupta and P. K. %ha, “ Eigenwdue spectrum of rect~gul~ wave-
guide with two symmetrically placed double ridgesy IEEE Tram. Micro-
waue Theo~ Tech., vol. MTt-29, pp. 47-51, Jan. 1981.
E. V. Jufl, W. J. Bleackley, and M. M. Steen, “The design of waveguide
with symmetrically placed double ridges,” IEEE Trans. Microwaue Theoy
Tech., vol. MTT-17, pp. 397-399, July 1969.

Mutual Impedance Computation BetweenMicroStrip
Antennas

E. H. NEWMAN, MEMBER, IEEE, J. H. RICHMOND, FELLOW, lEEE,

AND B. W. KWAN

Abstract —A moment-method solution for the mutual coupling between

rectangular microstrip antennas is presented. The grounded dielectric slab

is accounted for exaetIy in the anatysis.

Manuscript received May 11, 1982; rewsed June 23, 1983. This work was
supported in part by the Department of the Army under Grant DAAG29-81-
K-0020 and by the Joint ServicesElectronics Program under Contract NOOO14-
78-C-0049 with The Ohio State University Research Foundation.

The authors are with the Ohio State University Electro ScienceLaboratory,
Department of Electrical Engineering, Columbus, Ohio 43212.

0018 -9480/83 /1100-0941 $01.00 Q1983 IEEE



942 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, NO. 11, NOVEMBER 1983

L INTRODUCTION

A microstrip antenna is a thin metallic patch printed on a

grounded dielectric slab. The fact that they are lightweight, flush

mountable, and inexpensive to fabricate has resulted in consider-

able interest and application of these antennas. Recently, a

special issue of the IEEE TRANSACTIONS ON ANTENNAS AND

PROPAGATION [1] was devoted to tnicrostrip antennas. Much of

the theoretical or computational work on microstrip antennas has

dealt with the isolated element. The analysis of mutual coupling

between microstrips is important in the design of antenna arrays,

especially if tight pattern control or low sidelobes is required.

Alexopoulos and Rana [2] have employed the method of mo-

ments (MM) to compute the mutual impedance between ex-

tremely narrow printed circuit dipoles. Here, we employ the

method of moments to compute the mutual impedance between

microstrip antennas. This work differs from that previously done

by one of the authors [3], in that here the grounded dielectric slab

is accounted for in an exact manner.

II. MOMENT-METHOD SOLUTION

In this section, we will outline the moment-method solution for

coupled microstrip antennas. Fig. 1 shows two rectangular micro-

strip antennas on a grounded dielectric slab. Patch 1 is excited by

a constant 1-A current, ~ = Z?A, which is a reasonable approxi-

mation to a coaxial or edge feed [3]. The surface current, ~,, on

the microstrip patches is a solution of the symbolically written

integral equation

Ex+Ei=O (1)

for the tangential fields on the microstnp patches. Here, < is the

vector sum of the current on the top and bottom surfaces of the

patches, and E, and E, are the electric fields radiated by ~ and ~,

respectively, in the presence of the grounded dielectric slab.

Using reciprocity and the zero reaction concept, (1) can be

written as the reaction integral equation [4]

—
Ll /

J~ .ETds = ~ .ETdl (2)
s L

where the surface integral is over the surface of the microstrip

patches (where J~ exists) and the line integral is over the length of

~. ET is the electric field, in the presence of the grounded

dielectric slab, of an arbitrary test surface current .l~ located on S.

Equation (2) will be solved for Js by the numerical technique

known as the MM [5]. The MM can transform a linear integral

equation, which may have no known exact solution, into a system

of simultaneous linear algebraic equations which can be easily

solved via matrix algebra. Under the proper circumstances, the

solution of the simultaneous linear equations provides an excel-

lent approximation to the integral equation [5]. The MM solution

closely parallels the authors previously published solution for

conducting plates in free space [6]. However, for completeness, it

will be briefly reviewed here.

Although (2) must apply for an arbitrary test current J=, we

will enforce (2) for only a finite sequence of test currents, usually

called test modes. If we place 1 test modes on the first microstrip

patch and Jon the second, then we will have a total of N = I + J
test modes denoted ~~ ( rn = 1,2,. ... N). These test modes can be

any N linearly independent current shapes on the patches. En-

forcing (2) for each Jti, yields the system of simultaneous integral

equations

—JJ JJ~ .E., ds = L~ -En, dl m=l,2, -.. ,N (3)
s

t’

/’s ‘-”%/
J,=;

/

A , /77/// /////7/1Lt
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F,g. 1. Two coupled microstrip antennas on a grounded dielectric slab.

where En, is the field of Jti, in the presence of the grounded

dielectric slab.

The next step in the MM solution is to expand the current <..

If we use 1 expansion modes on the first patch and J modes on

the second, then

(4)
~=1

where the Jn (n=l,2,. c. , N) are a sequence of known current

functions, termed expansion modes, and the I. (n= 1,2,.. . ,N)

are unknown complex coefficients.

As suggested by (4), we have chosen the expansion modes

identical to the test modes. This is termed a Galerkin solution [5].

Inserting (4)

equations

where

into (3) yields the system of simultaneous linear

? I,,%.= n m=l,2,. ... N
*=1

Zmz,,= – J /Efi,. Jn ds
s,,

(5)

(6)

v., = jEH,. ~dl (7)
L

and & is the surface of the n th expansion mode. Equations (6)

and (7) are evaluated in the Appendix for parallel or skew modes.

The convergence and accuracy of the MM solution is depen-

dent upon how well the finite sum on the right-hand side of (4)

approximates the true Js. Thus the choice of the J. is a crucial

step in the MM solution. Our previous experience with plates in

free space [6] indicates that the piecewise-sinusoidal surface-patch

dipole is a reasonable choice. Referring to Fig. 6, for a dipole of

width w~ and length 2h ~, which is centered on the z-axis

(8)

In general, two orthogonal and overlapping arrays of dipole

modes are placed on each patch, in exactly the same manner as is

used in the surface patch solution for plates in free space [7]. For

plates in free space, we have used K = kO= free-space wavenum-

ber. However, for microstrip antennas this is not the optimum

choice, and further, the convergence of the solution is very

dependent upon the choice for K. This is because the input

impedance of a microstrip is dependent upon the slope or diver-

gence of the current Js at the feed point. The dependence of the

convergence upon the choice of K is illustrated in Figs. 2 and 3.

Here, we plot the computed resonant frequency and resonant
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Fig 3 Convergence of resonance resmtance for two values of K ( N odd),

resistance versus the number (1= N odd) of expansion modes on

a single microstnp patch. Note only ~-polarized modes are used.

The resonant frequency is that frequency where the input imped-

ance is purely resistive. The resonant resistance is the input

resistance at the resonant frequency. Curves are shown for K = /cO
and for K = keq = LJ&, where [8]

(9)

Note the rapid convergence with keq versus that with ko. In all

data to follow, K= keq.

III. COUPf,ED MICROSTRIPS

A significant advantage of the moment-method solution is that

coupled microstrips can be treated with no additional theory than

that for the isolated microstrip. Figs. 4 and 5 show computed E
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Fig, 5. H-plane coupling for identical microstrips.

)

and H plane coupling, for identical microstrips, versus separa-

tion, compared with measurements by Jedlicka et al. [9]. The

magnitude of the scattering parameter SIZ is shown to conform

with the measurements. For the data, the isolated microstnps

were resonant with a 50-fi? resistance. This occurred at 1417 MHz

for the computations, and at 1410 MHz for the measurements.

There is genera)ly good agreement between computed and mea-

sured results. Figs. 4 and 5 were calculated with 1 = J = 1

i-polarized mode per patch and required about 60 s per data

point on a VAX 11/780 (about 3 times slower than an IBM 370).

IV. CONCLUSIONS

We have demonstrated the accurate and efficient computation

of the mutual impedance between rectangular microstrip anten-

nas. Also, exact expressions for the mutual impedance between

skew modes on a grounded dielectric slab were given. This type

of information is useful in the design of microstrip arrays, espe-

cially if low sidelobes are desired.
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APPENDIX

MU~UALIIAPEDANCE

In this appendix, we will present the exact expressions for the

mutual impedance between two surface-patch dipole modes on a

lossy grounded dielectric slab. The mutual impedance between a

surface-patch mode and the current ~, required in (7) will also be

presented. Fig. 6 shows two surface-patch dipole modes, of

current densities J., and ~,, located on the surface of a grounded

dielectric slab of real permeability p2 and complex permittivity

c~. The ambient medium is free space with parameters PI and c1.

The eJ”* time dependence is supressed. Mode J~ is centered with

respect to the z-axis and is polarized in the ~-direction. Mode n is

staggered a distance XO in the x-direction and a distance YOin the

y-direction. Mode Yn is at an angle a with respect to the x-axis.

The mutual impedance between modes m and n is given by

JZw,z= – E~.Jndy (Al)
n

where the integration is over the surface of mode n. The first step

in finding ZWZ~ will be to find Em at z = t, i.e., at the surface of the

slab.

Mode m will be a separable function of x and y, i.e.,

JW,(x, y)=iJ~(x, y)= fX~(x)YM(y) (A2)

where X,,, (x) and Yfi, ( y ) are even functions of x and y, respec-

tively. The transform of X.,(x), denoted ~., (/3), is

x., (p)= 2Jmx., (x)cos L?xdx. (A3)
o

Similarly

z,(f) =2 J@ Y., (y)cosfydy. (A4)

The fields in regions 1 and 2 are expressed in terms of TE and

TM to z-modes. The field components are expressed in integral

forms in terms of eigenfunctions and spectraf distribution func-

tions. The spectraf functions are determined by matching the

boundary conditions at z = t.The result is that the exact tangen-

tial electric field at z = 1 is given by

//
E,fi, = m “12FYCOS~xcos fy d~ dk (A5a)

00

Evfi, = jmjV’2Fysin ~xsin fy d~ dk (A5b)
00

where

FX =
– sinb gt

[

f’-r; ~,.@Y
+

jucz~’k I%Y sinh gt + gcosh gt e,Cycosh gt + g sinh gt 1
“%( B)~m(f) (A6a)

F,=
– sinh gt

[

Y; ~.cYg
+

jtic=~=k Prysinh gt + gcosh gt c.Cycosh gt + g sinh gt 1
.pfxm(/3)Fm(f) (A6b)

~ z=p~+f=,and where cr. = Cz/Cl, p, = IL=/Pl, Y2 = j~ IJ2C2, k

~=kcos~, f =ksin@, g== k2+y~, and y’=k’ – W=plcl. Z~n

can now be found by inserting (A5) and (A6) into (Al) and

performing the surface integral over mode n in closed form.

Referring to Fig. Al, mode J. is written as a separable function
of X’ andy ’

$,(x’, y’) = i~, (x’, y’) = f’xn(x’)Yn(y’). (A7)

Mode J.. makes an angle a with respect to the x-axis and is

,,,

=+----=

— 2hm-+
z

t REGION I

.
GROUND PLANE>

Fig. 6. Two surface-patch dipole modes on a grounded dielectric slab

centered at (x, y) = ( XO, Ye). Equation (Al) becomes

z.,=- j:,~:; %Ji,dxf4”=- j:mj:mE.,J.dxWyf
,, ,7

(A8)

where the limits on the integral can be removed to infinity since

~, is zero exterior to mode n. Inserting (A5) into (A8) yields

where

~’=i~cosa+ lfsina=k( icosr)cosa+l sin$sina)

(AIOa)

f’=lfcosa- i~sina=k (lsin+cosa -icos+sinrt).

(AIOb)

In deriving (A9) we used the identities

cos (?xcos fy = A ~ ~ eJ’fi’eJ[fL’
4

(Alla)

1[

1

where ~ means ~ excluding 1= O.

For t~e special &selof parallel modes, a = O, and (A9) reduces

to

HZml,,= – m“’2FYX,,(~)~ ( f ) cos/3xocosfyo d+ dk.
00

(A12)

If all transforms can be obtained in closed form, then (A9)

expresses the mutual impedance with two numerical integrations

required.

Here we make the following choice for the modes (see (A2) and

(A7)):

X~(x) =sin K(hn, – \xl)/sin Kh”l (A13)

Yn,(y) =l/wm (A14)
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and similarly for mode n. In this case, the transforms are

Xm(p)=
2K(cos/3h~ –COS Kh~)

(A15)
sin KhM(K2–/32)

~,(f)=
sin (fin, /2)

(f%l/2)
(A16)

Note that when (A15) and (A16) are substituted into (A12), the
only place that the stagger between the modes enters is the factor
Cospxocos jjlo.

It should be noted that in evaluating (A9) or (A12) for real C,C
(i.e., lossless slab), the integrand is singular when k satisfies

gsinhgt + c,Cycoshgt = O. (A17)

If c~, is complex (i.e., a lossy slab), then the values of k which

satisfy (A17) are complex, and the integrand will be large but not

singular., In either case, numerical integration in the vicinity of

the singularity or near singularity will. be difficult and time

consuming. One should perform this region of the integraf ana-

lytically using residue theory or similar techniques.

The right-hand vector in tlie moment-method solution is given

by (6). Omitting all details, for a surface-patch mode center at the

origin (i.e., mode ~m,in Fig. 6) and ~ located at ( Xf, yf ) the result

is

where

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Q. ky sinhgt

g(gsifigt + crCycoshgt)”
(A19)
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Analysis of the Hybrid Modes for an Eccentrically

Cladded Fiber
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,-fbstract —This paper examines the hybrid-cladding modes of an ec-

centrically cladded three-layer dielectric fiber. The solutions are specialized

to smafl eccentricities, and exact closed-form expressions for the nororaf-
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ized deviations of the cutoff wavenumbers from those of th~ concentric

case are determined. Numerical results for various types of hybrid-cladding

modes of the fiber are given. For certain vafues of the parameters, it is

possible to enhance the operating bandwidth of the basic hybrid mode

HE ~1 over the conventional concentric fiber because its cutoff frequency

can be shown to remain zero.

I. INTRODUCTION

This paper extends the results of a previous work [1] for the

symmetrical modes in a cladded fiber to the more interesting and

practical case of its hybrid modes. The eccentricity d (Fig. 1)
might arise either as a manufacturing defect or as an intentional
feature of the fiber with the purpose of improving the operating
characteristics. The main difference in the a.mdysis of the two
cases lies in the complexity of the limiting forms for the cutoff
condition of the various hybrid modes. The same final expression
for the cutoff wavenumbers of the cladding modes knm ( d) is

obtained

kn&4)=k nm(0)[l+gn m(knm(0)d)2] (1)

where for the normalized deviations gn ~, closed-form but more

complicated expressions are developed. For certain values of the

parameters, it is possible in conjunction with the results of [1] to

enhance the operating bandwidth of the basic hybrid mode HE1l

over the conventional concentric fiber. Numerical results for

various hybrid modes and for severaf profiles of cladded fibers

are also included.

II. Tm ANALYSIS

Referring to the waveguide of Fig. 1, which is a perturbation of

the more commonly known concentric structure and with as-

sumed harmonic time dependence exp ( i u t), the longitudinal
field components E:(P) and H;, (P) can be expanded in terms of

the appropriate Bessel and azimuthaf functions as follows:
.

[

Cn Dn
+ ~, JH(k2r1)+D,

1)
K(%rl) sin(ndl) e-”= (3)

,1 n

E:,(p) =
m

X[

A B
:“ cos(rz@2)+ B~” sin ( n02 )

H=:(P) .=0 ~3n 3. 1

.H!1)(k3r2)e-’~’ (4)

where k, = (W2p, f, – y2)1/2, i =1,2,3. The superscript 1 or 2

denotes the reference center of coordinates (see Fig. 1). The

subscript 1, 2, or 3 denotes the region of space.

The boundary conditions at rl = RI and r2 = R‘ require that

the tangential components of ~, ~ be continuous [1], This further

necessitates the re-expansion of the field components E},, Hj, in

terms of cylindrical circular wavefunctions around the axis 02

using translational addition theorems [2].

The end result is (4) and (5) of [1]. We then turn our attention

to the hydrid modes of the fiber by considering values of p >1,

whereas the symmetrical modes of [1] correspond top = O.
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