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when the gaps are centered or each ridge is a symmetrical double
ridge. Some additional information is given in Fig. 3, where, for a
fixed ridge width (s/a) and two values of ridge spacing (z/a),
the variations of the normalized cutoff wavelength (A _/a) and
the bandwidth B with gap width (d/b) are shown for a regular
structure with two symmetrical double ridges and an inverted
structure with two single ridges.

B. Eigenvector and Gap Impedance

To solve the eigenvector C{/>® in (10) was expressed in terms
of C{*% and inverted submatrices after further manipulations.
However, these expressions were not useful for numerical compu-
tation, as the diagonal elements of diagonal matrices H, and H,
are all zero after the first few leading elements, which cause
failure in numerical inversion. The actual computation of the
eigenvector components was carried out by a Gauss—Siedel itera-
tion of (10) with C{/** made arbitrary successively (usually unity
prior to normalization of the eigenvector). The matrix [ H] being
diagonally dominant, the convergence was excellent.

The variation of Z,, at the gap center (p =0.5) with (d/b)
for the dominant TE mode in an inverted structure with two
single ridges is shown in Fig. 3. For a given set of parameters
(t/a), (s/a), and (d/b), this impedance is found to be almost
independent of gap height (% /b), that is, almost identical for the
regular and inverted structures. For given (s/a) and (d/b),
however, it varies considerably with ridge spacing (¢/a) in either
case. The impedance curves in Fig. 3 also closely depict those for
the regular structure with two symmetrical double ridges of
identical parameters, with the difference of impedance in the two
cases being less than 0.5 percent.

V. RIDGED WAVEGUIDE VARACTOR-TUNED GUNN
OSCILLATOR

In this section, some preliminary experimental results obtained
with two empirically-designed XN-band varactor-tuned Gunn
oscillators in fixed-length ridged-waveguide resonators are pre-
sented. The device mounts were not optimized and the choice of
ridge parameters was guided purely by mechanical considera-
tions. Fig, 4(a) shows the schematic diagrams of the device mount
in an inverted ridged WR-137 waveguide resonator (referred to as
oscillator A). For the oscillator with a resonator in regular
configuration (referred to as oscillator B), all the dimensions
except the ridge spacing were identical. The performance of these
two oscillators is shown in Fig. 4(b), where the measured shift in
oscillation frequency and the output power are plotted as func-
tions of varactor bias.

V1. CONCLUSIONS

The Ritz—Galerkin technique has been applied to determine
the eigenvalues of a rectangular waveguide with two double
ridges located arbitrarily. When two identical, asymmetric double
ridges are placed symmetrically, considerable improvement in
bandwidth occurs if one ridge is inverted with respect to the
other. The best result is obtained when two single ridges are
closely spaced in an inverted configuration. The eigenvector has
been obtained by iteration of the matrix equations and has been
used in determining the gap impedance. Finally, the same pre-
liminary results obtained with two XN-band varactor-tuned Gunn
oscillators in regular and inverted ridged resonators have been
presented. Though there is scope for optimization of the device
mounts, the results are certainly promising for such applications
of the ridged waveguides.
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Fig. 4. (a) Varactor-tuned Gunn oscillator in inverted waveguide resonator

(waveguide: WR-137). s =025 in, d=0.1 in, /=175 in, L=0875in ¢t =
0.157 in (OSC.A); 0.295 in (OSC.B). (b) Variation of frequency shift and
power output with varactor bias (V). Frequency of oscillation at V3 =04
V: 7.495 GHz (OSC.A); 7.20 GHz (OSC.B). Varactor diode: AEI DC 4201B,
Gunn diode: MA 49151 (OSC.A); MA 49156 (OSC.B).

ACKNOWLEDGMENT:

The authors are thankful to Professor B. R. Nag for his
encouragement during the work, and to the Computer Centre,
Calcutta University, for the use of their IBM 1130 computer, The
helpful suggestions from the reviewers are very much appreciated.

REFERENCES

(11 J. P. Montgomery, “On the complete eigenvalue solution of ridged wave-
guide,” IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp. 547-555,
June 1971.

(2] D. Dasgupta and P. K. Saha, “Eigenvalue spectrum of rectangular wave-
guide with two symmetrically placed double ridges,” JEEE Trans. Micro-
wave Theory Tech., vol. MTT-29, pp. 47-51, Jan. 1981,

[3] E. V. Jull, W. J. Bleackley, and M. M. Steen, “The design of waveguide
with symmetrically placed double ridges,” IEEE Trans. Microwave Theory
Tech., vol. MTT-17, pp. 397-399, July 1969.

Mutual Impedance Computation Between Microstrip
Antennas

E. H NEWMAN, MEMBER, IEEE, J. H. RICHMOND, FELLOW, IEEE,
AND B. W. KWAN "~

Abstract —A moment-method solution for the mutual coupling between
rectangular microstrip antennas is presented. The grounded dielectric slab
is accounted for exactly in the analysis.
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1. INTRODUCTION

A microstrip antenna is a thin metallic patch printed on a
grounded dielectric slab. The fact that they are lightweight, flush
mountable, and inexpensive to fabricate has resulted in consider-
able interest and application of these antennas. Recently, a
special issue of the IEEE TRANSACTIONS ON ANTENNAS AND
PROPAGATION [1] was devoted to microstrip antennas. Much of
the theoretical or computational work on microstrip antennas has
dealt with the isolated element. The analysis of mutual coupling
between microstrips is important in the design of antenna arrays,
especially if tight pattern control or low sidelobes is required.
Alexopoulos and Rana {2] have employed the method of mo-
ments (MM) to compute the mutual impedance between ex-
tremely narrow printed circuit dipoles. Here, we employ the
method of moments to compute the mutual impedance between
microstrip antennas. This work differs from that previously done
by one of the authors [3], in that here the grounded dielectric slab
is accounted for in an exact manner.

II. MOMENT-METHOD SOLUTION

In this section, we will outline the moment-method solution for
coupled microstrip antennas. Fig. 1 shows two rectangular micro-
strip antennas on a grounded dielectric slab. Patch 1 is excited by
a constant 1-A current, J, =2 A, which is a reasonable approxi-
mation to a coaxial or edge feed [3]. The surface current, J;, on
the microstrip patches is a solution of the symbolically written
integral equation

E +E=0 0]

for the tangential fields on the microstrip patches. Here, J, is the
vector sum of the current on the top and bottom surfaces of the
patches, and E| and E, are the electric fields radiated by J; and J,
respectively, in the presence of the grounded dielectric slab.
Using reciprocity and' the zero reaction concept, (1) can be
written as the reaction integral equation [4]

_foJS.ETds=fLJ,~Ele (2

where the surface integral is over the surface of the microstrip
patches (where Jg exists) and the line integral is over the length of
J.. E; is the electric field, in the presence of the grounded
dielectric slab, of an arbitrary test surface current J;- located on S.

Equation (2) will be solved for J; by the numerical technique
known as the MM [5]. The MM can transform a linear integral
equation, which may have no known exact solution, into a system
of simultaneous linear algebraic equations which can be easily
solved via matrix algebra. Under the proper circumstances, the
solution of the simultaneous linear equations provides an excel-
lent approximation to the integral equation [5]. The MM solution
closely parallels the authors previously published solution for
conducting plates in free space [6]. However, for completeness, it
will be briefly reviewed here.

Although (2) must apply for an arbitrary test current J, we
will enforce (2) for only a finite sequence of test currents, usually
called test modes. If we place I test modes on the first microstrip
patch and J on the second, then we will have a total of N=17+J
test modes denoted J,, (m =1,2,- - -, N). These test modes can be
any N linearly independent current shapes on the patches. En-
forcing (2) for each J,, yields the system of simultaneous integral
equations

—foJS~Emds=fLJ,-Emd1 m=1,2,---.N  (3)
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where E,, is the field of J,, in the presence of the grounded
dielectric slab.

The next step in the MM solution is to expand the current Jg.
If we use I expansion modes on the first patch and J modes on
the second, then

N
JS= Z Ian (4)
n=1
where the J, (n=1,2,--+,N) are a sequence of known current

functions, termed expansion modes, and the I, (n=1,2,---,N)
are unknown complex coefficients.

As suggested by (4), we have chosen the expansion modes
identical to the test modes. This is termed a Galerkin solution [5].
Inserting (4) into (3) yields the system of simultaneous linear
equations

N

E Iann I/;n m=1’2’.-.’N (5)

n=1

where
an f == E”I. JH ds 6
fs " / (6)
Vo= [E,cdidl )
L

and S, is the surface of the nth expansion mode. Equations (6)
and (7) are evaluated in the Appendix for parallel or skew modes.

The convergence and accuracy of the MM solution is depen-
dent upon how well the finite sum on the right-hand side of (4)
approximates the true Jg. Thus the choice of the J, is a crucial
step in the MM solution. Our previous experience with plates in
free space [6] indicates that the piccewise-sinusoidal surface-patch
dipole is a reasonable choice. Referring to Fig. 6, for a dipole of
width w,, and length 24,,, which is centered on the z-axis

y S K (b, —1x)
m= w, sinKh,

(8)

In general, two orthogonal and overlapping arrays of dipole
modes are placed on each patch, in exactly the same manner as is
used in the surface patch solution for plates in free space [7]. For
plates in free space, we have used K = k, = free-space wavenum-
ber. However, for microstrip antennas this is not the optimum
choice, and further, the convergence of the solution is very
dependent upon the choice for K. This is because the input
impedance of a microstrip is dependent upon the slope or diver-
gence of the current J; at the feed point. The dependence of the
convergence upon the choice of K is illustrated in Figs. 2 and 3.
Here, we plot the computed resonant frequency and resonant
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resistance versus the number (I = N odd) of expansion modes on
a single microstrip patch. Note only %-polarized modes are used.
The resonant frequency is that frequency where the input imped-
ance is purely resistive. The resonant resistance is the input
resistance at the resonant frequency. Curves are shown for K = k
and for K = k., = w\/io€.q , Where [8]

e,+1 €1 10:1-12
/€= "3 T3 [1+“W7] : 9
Note the rapid convergence with k., versus that with k. In all
data to follow, K = k..

€

III. COUPLED MICROSTRIPS

A significant advantage of the moment-method solution is that
coupled microstrips can be treated with no additional theory than
that for the isolated microstrip. Figs. 4 and 5 show computed £
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and H plane coupling, for identical microstrips, versus separa-
tion, compared with measurements by Jedlicka er al. [9]. The
magnitude of the scattering parameter S, is shown to conform
with the measurements. For the data, the isolated microstrips
were resonant with a 50-Q resistance. This occurred at 1417 MHz
for the computations, and at 1410 MHz for the measurements.
There is generally good agreement between computed and mea-
sured results. Figs. 4 and 5 were calculated with /=J=1
%-polarized mode per patch and required about 60 s per data
point on a VAX 11 /780 (about 3 times slower than an IBM 370).

IV. CONCLUSIONS

We have demonstrated the accurate and efficient computation
of the mutual impedance between rectangular microstrip anten-
nas. Also, exact expressions for the mutual impedance between
skew modes on a grounded dielectric slab were given. This type
of information is useful in the design of microstrip arrays, espe-
cially if low sidelobes are desired.
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APPENDIX
MuTUAL IMPEDANCE

In this appendix, we will present the exact expressions for the
mutual impedance between two surface-patch dipole modes on a
lossy grounded dielectric slab. The mutual impedance between a
surface-patch mode and the current J;, required in (7) will also be
presented. Fig. 6 shows two surface-patch dipole modes, of
current densities J,, and J,, located on the surface of a grounded
dielectric slab of real permeability p, and complex permittivity
¢,. The ambient medium is free space with parameters g, and €.
The e/’ time dependence is supressed. Mode J,, is centered with
respect to the z-axis and is polarized in the %-direction. Mode # is
staggered a distance x, in the x-direction and a distance y, in the
y-direction, Mode J,, is at an angle « with respect to the x-axis.

The mutual impedance between modes m and »n is given by

Zyn = —fEm~Jndy (A1)
n
where the integration is over the surface of mode n. The first step
in finding Z,,, will be to find E,, at z = ¢, i.e., at the surface of the
slab.
Mode m will be a separable function of x and y, i.e.,

I (x,y) =20, (x,y) = 2X,,(x)Y,(y) (A2)

where X,,(x) and Y, (y) are even functions of x and y, respec-
tively. The transform of X,,(x), denoted X, (f), is
)?m(/a)=zf X,,(x)cos Bx dx. (A3)
0
Similarly
_— e}
() =2[ Y (y)eosfydy. (A4)

The fields in regions 1 and 2 are expressed in terms of TE and
TM to z-modes. The field components are expressed in integral
forms in terms of eigenfunctions and spectral distribution func-
tions. The spectral functions are determined by matching the
boundary conditions at z = ¢. The result is that the exact tangen-
tial electric field at z = ¢ is given by

= foof"ﬂ}{;cos Bxcos fyde¢ dk (A5a)
0 “o
7/2
Eon= | il /*F,sin Bxsin fy d dke (A5b)
o “o
where
F = —smh gt [ f2Y22 ercgﬂzy
* jwe,m*k | mysinh gt + geosh gt €, ycosh gr+ gsinh g7 |
Xu(B)Y(f) (A6a)
F = — sinh gt ‘Y’7 €..Y8 -
Y jwe,mlk | prysinh gr+ gcosh gt €,cycosh gf + gsinh g7 |
BIXa (B, (f) (A6b)

and where €, = €, /€, i, = 1y /I, Vo = jwy/pot,, KT =B7 + 7,
B=rkcos¢, f=ksing, g2 =k*>+v3, and y2 = k> — *uy€;. Z,,,
can now be found by inserting (AS) and (A6) into (Al) and
performing the surface integral over mode # in closed form.

Referring to Fig. Al, mode J, is written as a separable function
of x” and y’

"n(‘x/7y’) = '*I‘In(x,’yl) = ‘,Xn(x,)Yn(y’)'
Mode J, makes an angle o with respect to the x-axis and is

(A7)
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centered at (x, y)= ( Xgs Yo)- Equation (Al) becomes

Zp== [ [" " B sady=—[" [ E, Jaxa

—Wysw — oY — 00
(A3)

where the limits on the integral can be removed to infinity since
J, is zero exterior to mode n. Inserting (A5) into (A8) yields

® (/2 Fx 1Bx Y NNV ’
Zmn= _‘/(.) '/(; {Tzl:;ej(ﬂ 0+1f)u)Xn(B )Yvn(f )COS(X

+ B3 S om0, (8)7,(17) sina} dbdk (A9)
v

where
B’ =iBcosa+ lfsina=k(icos ¢pcosa+ [singsina)
(A102)
f’=Ifcosa—ifsina=k(/sin¢cosa—icospsina).
(A10b)
In deriving (A9) we used the identities
1
cos Bxcos fy = 7 YN estBresY (Alla)
[
sin Bxsin fy = —} 3 N itedBre sty (Al1b)
[

1
where Y means ).

! I=—1
For the special case of parallel modes, a = 0, and (A9) reduces
to

excluding /= 0.

mn_ f fW/zF ;(B)Yn(f)cosﬁxocosf)bd‘;bdk-
(A12)

If all transforms can be obtained in closed form, then (A9)
expresses the mutual impedance with two numerical integrations
required.
Here we make the following choice for the modes (see (A2) and
(AT)):
X, (x)=sinK(h,,—

Y, (y)=1/w,

|x)/sin Kh,, (A13)

(A14)
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and similarly for mode ». In this case, the transforms are

— _ 2K(cosBh,, —cos Kh,,)

Xn(B)= sin K, (K*— B2) (A15)
= _ sin(fw,,/2)

Y, (f )———( ) (A16)

Note that when (A15) and (A16) are substituted into (A12), the
only place that the stagger between the modes enters is the factor
cos Bx,c0s fy,.

It should be noted that in evaluatmg (A9) or (Al2) for real ¢,,
(i.e., lossless slab), the integrand is singular when k satisfies

(A17)

If €,, is complex (i.e., a lossy slab), then the values of k£ which
satisfy (A17) are complex, and the integrand will be large but not
singular., In either case, numerical integration in the vicinity of
the singularity or near singularity will. be difficult and time
consuming. One should perform this region of the integral ana-
lytically using residue theory or similar techniques.

The right-hand vector in the moment-method solution is given
by (6). Omitting all details, for a surface-patch mode center at the
origin (i.c., mode J,, in Fig. 6) and J, located at (x 1> ¥r) the result

is
V= TWe, .[ Qfﬂ/zﬁ

kysmhgt
g(gsmhgt +¢€,ycoshgr)

gsinhgr + ¢, ycoshgr = 0.

Y,,sin Bxcos fy, do dk  (A18)

where

(A19)
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Analysis of the Hybrid Modes for an Eccentrically
Cladded Fiber

ANDREAS D. LYRAS, JOHN A. ROUMELIOTIS,
JOHN D. KANELLOPOULQOS, aND JOHN G. FIKIORIS

Abstract —This paper examines the hybrid-cladding modes of an ec-
centrically cladded three-layer dielectric fiber. The solutions are specialized
to small eccentricities, and exact closed-form expressions for the normal-
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ized deviations of the cutoff wavenumbers from those of the concentric
case are determined. Numerical results for various types of hybrid-cladding
modes of the fiber are given. For certain values of the parameters, it is
possible to enhance the operating bandwidth of the basic hybrid mode
HE,, over the conventional concentric fiber because its cutoff frequency
can be shown to remain zero. ;

I. INTRODUCTION

This paper extends the results of a previous work [1] for the
symmetrical modes in a cladded fiber to the more interesting and
practical case of its hybrid modes. The eccentricity d (Fig. 1)
might arise either as a manufacturing defect or as an intentional
feature of the fiber with the purpose of improving the operating
characteristics. The main difference in the analysis of the two
cases lies in the complexity of the limiting forms for the cutoff
condition of the various hybrid modes. The same final expression
for the cutoff wavenumbers of the cladding modes k,,,(d) is
obtained

Ko (d) =k (O)[ 1+ g1, (K, (0) )] (1)

where for the normalized deviations g,,,, closed-form but more
complicated expressions are developed. For certain values of the
parameters, it is possible in conjunction with the results of [1] to
enhance the operating bandwidth of the basic hybrid mode HE,;
over the conventional concentric fiber. Numerical results for
vatious hybrid modes and for several profiles of cladded fibers
are also included.

II. THE ANALYSIS

Referring to the waveguide of Fig. 1, which is a perturbation of
the more commonly known concentric structure and with as-
sumed harmonic time dependence exp(iwt), the longitudinal
field components E/ (P) and H/ (P) can be expanded in terms of
the appropriate Bessel and azimuthal functions as follows:

£ (P) i [Z, cos(nf,)+

N

B", Sin(n(’l)]'Jn(klrl)e_'y’ @

HL(P) T ’
B _ 2 [[4 5, |
H:}g(p)=n¥ {[A’J (k2r1)+B,; Y,,(kzrl)}cos(nﬂl)

G D,
+ [C,Jn(k2r1)+ D Yn(kz"l)} sin(nﬂl)} e ' (3)

e

n=20 3n

H (k) e

sin{né, )]
4)

where k, = (w’p,e, —y?)"?, i=1,2,3. The superscript 1 or 2
denotes the reference center of coordinates (see Fig. 1). The
subscript 1, 2, or 3 denotes the region of space.

The boundary conditions at », = R; and r, = R, require that
the tangential components of E, H be continuous [1]. This further
necessitates the re-expansion of the field components EX, H:, in
terms of cylindrical circular wavefunctions around the axis 0,
using translational addition theorems [2].

The end result is (4) and (5) of [1]. We then turn our attention
to the hydrid modes of the fiber by considering values of p > 1,
whereas the symmetrical modes of [1] correspond to p = 0.
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